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Summary: The aldehyde 3b is prepared from (S)-pulegone (5) by a series of highly effective transformations, 
including a stereospecific [2,3]-Wittig rearrangement of the ally1 ether of 6, stereoselective selenolactonization of 
8c, SN~’ addition to 10 and a stereospecific intramolecular ene reaction of llb. 

In a recent report from this laboratory, Wovkulich, et al.2 described a novel strategy for the synthesis of 

lovastatin (la) in which the lactone chirality is generated via the diastereoselective cycloaddition of 2 to the decalin 

aldehyde 3a. Chiral 3a, in turn, was prepared from (S)-pulegone, 5, by a series of highly stereoselective 

transformations, the key one being the intramolecular ene reaction of 4a. In the present paper, we describe an 

approach to the decalin aldehyde 3b required for the synthesis of the clinically effective HMG-CoA reductase 

inhibitor pravastatin, lb3. 

la RI = H, R2 = Me Lovastsatin 

b RI = OH, R2 = H Pravastatin 

3a Rt = H, Rz = Me 
b R, = OH, Rz = H 

4a R1 = H, Rz = Me 
b R1 = OH, Rz = H 

5 

The alcohol 62 (Scheme) was converted to its allylic ether which underwent Wittig rearrangement upon 

treatment with n-BuLi4 to give a single diastereomer 7 5.6. The alcohol was protected as its t-butyldimethysilyl 

ether 8a and the terminal olefin selectively hydroborated with 9-BBN. Oxidation of the resulting alkylborane gave 

a primary alcohol 8b which was oxidized to the carboxylic acid 8c. 

Although the iodolactonization of SC (NaHCO3/I2) was stereospecific, in analogy to the lovastatin case,2 the 

elimination of the iodide to the olefin could not be accomplished without concomitant elimination of the silyloxy 

group. Mild oxidative elimination of the corresponding selenolactone proved to be more fruitful. 

Selenolactonization of crude SC with phenylselenenyl chloride798 using NaHC03 as base gave 9 in 50% isolated 

yield along with 7% of its diastereomer which was removed by flash chromatography. The lower selectivity of 

phenylselenolactonizations as compared to iodolactonizations has been seen previously.9 Oxidation with Hz02 

t This paper is dedicated to the memory of our good friend and co-worker Milton Jones. 
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gave the selenoxide which underwent smooth elimination at room temperature to give 10 in 85% yield. 

Scheme 

“b - Hlw c-e - . . . ..S.Om 

8a R = CH=CH2 

b R = CH2CH20H 
c R = CH2C02H 

h-i 

A A 
tBuMQi0 tBuMe#O 

lla R = COzMe 12a R = COzMe 

b R=CHO b R=CHO 

J 

13a R1 = H, R2 = CH=CH2 

b RI = AC, Rz = CH=CH, 

c R, = AC, R2 = CH2CH20H 
13 : 21 d R1 = AC, R2 = CH2CHO 

CONDITIONS: a) NaH, CH2=CHCH2Br; b) BuLi, THF, -78°C (58%); c) TBDMS-Cl; d) 9-BBN then NaOH, H202, 

e) PDC, DMF (66%): f) PhSeCI, NaHC03. CH$N (50%); g) 30% Hz02 (85%): h) allyl-TMS, SnC4, -90°C; 
i) CH2N2 (74%); j) DIBAL, PhCH3 (97%): k) Me2AIC1, CH2C12 (68%); 1) Ac20; m) Disiamylbrane then Hz02 (85%); 
n) (COC1)2, DMSO (64%). 

Addition of trimethylallylsilane to a CH2C12 solution of 10 and one equivalent of SnC4 at -9OOC gave 

predominantly axial, syn attack (see A below) by the ally1 group resulting in, after esterification, a 73:27 mixture 

of lla:12a.10~11 To our knowledge, stereoselective sN2’ addition of an ally1 group to an unsaturated lactone is 

unprecedented.12 In the case of a glycal acetate, the reaction is known to be biased towards axial attack of the 

ally1 moiety even if the acetate group is anti. 13 The minor isomer, 12a, may be derived from axial attack on 

the half-chair conformation B. The energy differences(h4M2) between the starting material conformers (A vs. B, 

1 Kcal/mol) and the product initial conformers (C vs D, 0.3 Kcal/mol) suggests that a more product-like transition 
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state is responsible for the observed stereoselection. The diastereomers lla and 12a could not be separated at 

this point and were carried on as a mixture. 

Reduction with DIBAL-H gave the aldehydes (llb, 12b) which underwent a smooth ene reaction on 

treatment with MezAlCl. Three products (13a, 14, and 15) were isolated by flash chromatography in yields of 

68, 12 and 12% respectively.14 From the product distribution (74:13:13), it may be deduced that the major 

aldehyde llb underwent a stereospecific intramolecular ene reaction to form 13b, while the minor aldehyde 12b 

reacted nonselectively. The stereochemistry at Cs and Cga for both 14 and 15 was not determined. 

14,15 

The secondary alcohol was protected as the acetate as required for the later stereocontrolled cycloaddition. 

Regioselective hydroboration with disiamylborane gave the primary alcohol. The relative stereochemistry of a 

derivative of 13c was confirmed by an X-ray crystallographic analysis. 15 Finally, Swem oxidation of 13c gave 

the aldehyde 3b. Completion of the synthesis of lb will be reported in due course. 
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13a: lH NMR (CDC13): S 0.05 (s, 6H), 0.81 (d, J=7 Hz, .3H), 0.87 (s, 9H), 3.90 (m, lH), 4.08 (brs, 

lH), 4.99 (d, J=lO Hz, lH), 5.02 (d, J=16 Hz, IH), 5.59 (brs, lH), 5.78 (m, 1H); l3C (CDC13): (C) 
132.7, 18.1 ; (CH) 137.8, 124.0, 69.4, 67.2, 44.2, 38.1, 28.1; (CH2) 115.7, 44.9, 43.4, 34.3, 31.9; 
(CH3) 25.8, 13.9, -4.5. 

14 (lower Rf isomer): lH NMR (CDC13): 6 0.07 (s, 6H), 0.87 (s, 9H), 0.98 (d, J=7 Hz, 3H), 4.00 (m, 
lH), 4.20 (brs, IH), 5.01 (d, J=lO Hz, lH), 5.03 (d, J=16 Hz, lH), 5.59 (m, IH), 5.83 (m, 1H). 

15 (higher Rf isomer): lH NMR (CDC13): 6 0.04 (s, 6H), 0.86 (s, 9H), 0.89 (d, J=7 Hz, 3H), 3.84 (m, 
IH), 4.22 (m. lH), 5.01 (d, J=lO Hz, lH), 5.08 (d, J=16 Hz, lH), 5.70 (m, IH), 5.80 (m, 1H). 
The X-ray crystal structure of(i) will be published elsewhere. 
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